99 research outputs found

    Hypothesis: Entrapment of lipoprotein particles in the brain causes Alzheimer’s disease

    Get PDF
    We present for consideration a hypothesis that impaired movement of lipoprotein particles in the extracellular space in the brain in ageing is central to and causes all the key pathophysiological features of Alzheimer’s disease (AD). The role of lipoprotein particles is to transport cholesterol from glial cells, where it is synthesised, to neurons, which require cholesterol for synaptic plasticity. The lipoprotein particles have a cholesterol-containing hydrophobic core, in which amyloid-β (Aβ) can be solubilised. The core is surrounded by a hydrophilic surface containing apolipoprotein E (APOE) which, as neurons bear receptors for APOE, determines the destination of the particles. The problem arises because the extracellular space is a narrow cleft, barely wider than the lipoprotein particles themselves, which they have to navigate in order to perform their crucial cholesterol-transporting function. We explain how lipoprotein particles could become trapped in the ageing extracellular matrix and that this primary abnormality results in reduced delivery of cholesterol to neurons leading to impaired synaptic plasticity, crucial for learning and memory. It can also explain extracellular Aβ accumulation, to which a microglial response generates a neurotoxic reaction, and intraneuronal tau aggregation, each of which exacerbate the problem. All these players have been known for many years to be important in Alzheimer’s pathogenesis but a single unifying mechanism to explain how they are linked has been lacking. This proposed mechanism, with entrapment of lipoproteins particles as key to the development of AD, can explain the failure of so many clinical trials and points out new directions to be taken

    Microglial contribution to synaptic uptake in the prefrontal cortex in schizophrenia

    Get PDF
    Microglia in human post-mortem tissue in schizophrenia patients' brains engulf synaptic material, but not differently to age-matched non-neurological control brains. Also, schizophrenia brains display similar levels of microgliosis to control brains

    Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer's disease

    Get PDF
    We studied the effects of systemic infection on brain cytokine level and cerebral vascular function in Alzheimer’s disease (AD) and vascular dementia (VaD), in superior temporal cortex (BA22) from AD (n = 75), VaD (n = 22) and age-matched controls (n = 46), stratified according to the presence or absence of terminal systemic infection. Brain cytokine levels were measured using Mesoscale Discovery Multiplex Assays and markers of cerebrovascular function were assessed by ELISA. Multiple brain cytokines were elevated in AD and VaD: interleukin (IL)-15 and IL-17A were maximally elevated in end-stage Alzheimer’s disease (Braak tangle stage V-VI) whereas IL-2, IL-5, IL12p40 and IL-16 were highest in intermediate Braak tangle stage III-IV disease. Several cytokines (IL-1β, IL-6, TNF-α, IL-8 and IL-15) were further raised in AD with systemic infection. Cerebral hypoperfusion, indicated by decreased myelin-associated glycoprotein:proteolipid protein-1 (MAG:PLP1) and increased vascular endothelial growth factor-A (VEGF), and blood-brain barrier leakiness, indicated by raised levels of fibrinogen, were exacerbated in AD and VaD, and also in non-dementia controls, with systemic infection. Aβ42 level did not vary with infection or in association with brain cytokine levels. In controls, cortical perfusion declined with increasing interferon-γ (IFN-γ), IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-13 and tumour necrosis factor-α (TNF-α) but these relationships were lost with progression of AD, and with infection (even in BS 0-II brains). Cortical platelet-derived growth factor receptor-β (PDGFRβ), a pericyte marker, was reduced, and endothelin-1 (EDN1) level was increased in AD; these were related to Aβ level and disease progression and only modestly affected by systemic infection. Our findings indicate that systemic infection alters brain cytokine levels and exacerbates cerebral hypoperfusion and BBB leakiness associated with AD and VaD, independently of the level of insoluble Aβ. Our findings highlight systemic infection as an important contributor to dementia, requiring early identification and treatment in the elderly population

    The heme-hemopexin scavenging system is active in the brain, and associates with outcome after subarachnoid hemorrhage

    No full text
    Background and Purpose – Long-term outcome after subarachnoid hemorrhage (SAH) is potentially linked to cytotoxic heme. Free heme is bound by hemopexin (Hpx) and rapidly scavenged by CD91. We hypothesized that heme scavenging in the brain would be associated with outcome after haemorrhage. Methods - Using cerebrospinal fluid (CSF) and tissue from SAH patients and control individuals, the activity of the intracranial CD91-Hpx system was examined using enzyme-linked immunoassays, ultra-high performance liquid chromatography and immunohistochemistry. Results - In control individuals, CSF Hpx was mainly synthesized intrathecally. After SAH, CSF Hpx was high in one-third of cases, and these patients had a higher probability of delayed cerebral ischaemia and poorer neurological outcome. The intracranial CD91-Hpx system was active after SAH since CD91 positively correlated with iron deposition in brain tissue. Heme-Hpx uptake saturated rapidly after SAH, since bound heme accumulated early in the CSF. When the blood-brain barrier was compromised following SAH, serum Hpx level was lower, suggesting heme transfer to the circulation for peripheral CD91 scavenging. Conclusions - The CD91-heme-Hpx scavenging system is important after SAH and merits further study as a potential prognostic marker and therapeutic target

    Microglial immunophenotype in dementia with Alzheimer's pathology.

    Get PDF
    BACKGROUND: Genetic risk factors for Alzheimer's disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. METHODS: Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer's pathology. Cerebral cortex obtained at post-mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I). RESULTS: The presence of dementia was associated positively with CD68 (P < 0.001), MSR-A (P = 0.010) and CD64 (P = 0.007) and negatively with Iba1 (P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 (P < 0.001) and negatively with CD68 (P = 0.033), and in participants with dementia and Alzheimer's pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer's pathology was negative or not significant, and positive in participants with dementia and Alzheimer's pathology. Apolipoprotein E (APOE) ε2 allele was associated with expression of Iba1 (P = 0.001) and MSR-A (P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 (P < 0.001). CONCLUSIONS: Our findings raise the possibility that in dementia with Alzheimer's pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer's pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aβ and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses

    Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease

    Get PDF
    Abstract Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer’s disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflammation, in the late-stage of the disease. Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2; and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively. Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68 (p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.047) and decreased IL5 (p = 0.007), IL7 (p = 0.002), IL12/IL23p40 (p = 0.001), IL15 (p = 0.008), IL16 (p < 0.001) and IL17A (p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection. Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However, rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an anti-inflammatory, potentially immunosuppressive, environment in the human brain

    Post-mortem analysis of neuroinflammatory changes in human Alzheimer's disease

    No full text
    Since the genome-wide association studies in Alzheimer’s disease have highlighted inflammation as a driver of the disease rather than a consequence of the ongoing neurodegeneration, numerous studies have been performed to identify specific immune profiles associated with healthy, ageing, or diseased brain. However, these studies have been performed mainly in in vitro or animal models, which recapitulate only some aspects of the pathophysiology of human Alzheimer’s disease. In this review, we discuss the availability of human post-mortem tissue through brain banks, the limitations associated with its use, the technical tools available, and the neuroimmune aspects to explore in order to validate in the human brain the experimental observations arising from animal models
    • …
    corecore